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ABSTRACT
Automated program repair aims to generate patches for buggy
programs, a task often hindered by the cost of test executions in
large projects. F1X introduces a novel methodology relying on test-
equivalence relations, defining if two programs yield indistinguish-
able results for a specific test. By leveraging two test-equivalence
relations based on runtime values and dependencies, F1X’ algo-
rithm categorises patches into test-equivalence classes, which helps
to significantly reduce the number of required test execution to
generate a patch without any information loss. Experiments on
real-world programs from the ManyBugs benchmark demonstrated
a substantial reduction in test executions, leading to efficiency gains
over the previous methods, while retaining the patch quality. The ef-
ficiency and effectiveness of F1X was further shown in APR-COMP
2024, where it received the highest score in the Functional-C track.

CCS CONCEPTS
• Software and its engineering → Automatic programming;
Software testing and debugging.

ACM Reference Format:
Sergey Mechtaev and Shin Hwei Tan. 2024. F1X at APR-COMP 2024. In
2024 ACM/IEEE International Workshop on Automated Program Repair (APR
’24 ), April 20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3643788.3648018

1 INTRODUCTION
Automated program repair [1] is fundamentally the task of making
precise alterations to a flawed program, denoted as 𝑃 , to ensure it
conforms to established correctness criteria, exemplified by a test
suite 𝑇 . This process results in a revised version of the program,
referred to as 𝑃 ′. Program repair has attracted significant a atten-
tion of researches and practitioners that culminated in successful
deployments, notably, at Meta [4] and Bloomberg [9].

Given the vast array of possible modifications (patches), navi-
gating this extensive search space can be challenging. Specifically,
test-driven program repair methods suffer from the high cost of
test executions necessary to find a patch. To optmize this process,
F1X, as outlined in Mechtaev et al. [5], categorizes potential patches
into test-equivalence classes, efficiently reducing the number of
required test executions by eliminating redundancies.
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2 TEST-EQUIVALENCE ANALYSIS
The simplest algorithm of program repair, often referred to as
generate-and-validate [7], enumerates and validates program mod-
ifications until it finds patch that satisfies the correctness criteria:
for candidate in Patches{

P' = apply candidate to program P;
check P’ against T;
if P’ passes all tests in T

break;
}

The main limitation of this algorithm is its scalability: since it
enumerates changes one-by-one, it has to perform a large number of
test execution, that are expensive in practice. As a result, it is able to
explore only relatively small search spaces. In order to address this,
we partition the space of programs in to test-equivalence classes.

Test equivalence. We call two programs P1 and P2 test-equivalent
if they produce indistinguishable result on a given test. By establish-
ing test-equivalence relations on the space of patches, it is possible
to significantly reduce the number of validation steps, since it is
sufficient to validate only a single patch from each test-equivalence
class. We propose to use two test-equivalence analyses: value-based
test-equivalence and dependency-based test-equivalence. Value-
based test-equivalence indicates that two programs differ only on
expression, and these expressions are evaluated into the same val-
ues during the test execution.

for (i=0; i<n; i++) { for (i=0; i<n; i++){
if (i % 2 == 1) if (i == 1)

print("1"); print("1");
} }

For example, these two programs are test-equivalent for test n=2,
since i % 2 == 1 and i == 1 are both evaluated into False, True
during test execution.

Dependency-based test-equivalence captures programs that dif-
fer only in the locations at which an assignment statement is in-
serted in the source code, and this difference does not affect the
data-flow during the test execution.
x = 1; if (n > 0){
if (n > 0) { x = 1;

print(x); print(x);
} }

These two programs are test-equivalent for test n=2, since if-
condition does not depend on the value of x.

3 RESULTS AND REFLECTION
Our method of identifying test-equivalence partitions of modifica-
tions reduces the number of required patch validation steps, and
therefore help to repair bugs significantly faster. We compared with
our algorithm and tool, F1X [5] with Angelix [6], GenProg [2] and
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Prophet [3]. Our experiments show that F1X provides up to 10x
speed-up on ManyBugs.

In APR-COMP Functional-C Track, there were three competing
tools: F1X, Darjeeling and LLMR (based on ChatGPT [8]). F1X was
the only tool that managed to generate patches that pass the private
tests. Specifically, it generated patches for bugs in Libtiff and Grep
applications. Here is an example of a generated patch for Grep:
--- a/src/dfasearch.c
+++ b/src/dfasearch.c
84c84
< mp += dm->begline;
---
> mp += eolbyte;

Despite the overall success of F1X in the competition, many
patches it generated were incorrect, which remains a major concern
in using test-driven program repair tools. We believe an integration
of F1X with LLMs might alleviate it, since F1X is able to efficiently
find a patch that passes the tests and LLM is able to reason about
aspects of the problem related to natural language, such as the error
message produced by the failing test, and take advantage of the
historical patches observed in its training data. Thus, investigating
a synergy of F1X and LLMs is a promising future direction.

4 COMPETITION ENTRY
F1X is an open source (MIT) project hosted on GitHub: https://
github.com/mechtaev/f1x. It was originally developed by Sergey
Mechtaev, Xiang Gao, Shin Hwei Tan and Abhik Roychoudhury,
but later more researchers contributed to its implementation. The
version submitted to the competition is also available on Zenodo:
https://doi.org/10.5281/zenodo.8425412.
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